
International Journal of Thermal Sciences 47 (2008) 825–833
www.elsevier.com/locate/ijts

Effects of latent heat storage on heat transfer in a forced flow
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Abstract

The thermal energy storage and heat transfer between a forced fluid of a pure fluid phase and a porous medium are theoretically studied.
A unified enthalpy model is developed to investigate the transient temperature field in the pure fluid phase and in the porous medium. Possible
transition from saturated to non-saturated porous medium is taking into consideration. Numerical results provide the parametric information
concerning effects of thermal energy stored in porous medium, by latent or sensible heat storage, on the temperature field in the forced fluid flow.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Heat transfer from a flowing fluid is often enhanced by
allowing the fluid flow to come into contact with a porous
medium, whereby heat is stored in the porous medium by sen-
sible or latent heat storage [1,2]. The use of porous media is
an effective means heat removal and it is motivated by several
engineering applications; including the air-conditioning and re-
frigeration industry, high effective cooling of electronic devices
with a porous heat sink, heat exchangers in nuclear industry re-
actors, and many others.

Recently, Hollmuller [3] has studied the heat diffusion in a
cylindrical air/soil heat-exchanger where the air-flow is submit-
ted to a harmonic temperature signal at input. Different geo-
metrical configurations have been studied to characterize the
amplitude-dampening and phase-shifting of the input periodic
signal.

There has been a current interest of the study of the hydro-
dynamic as well as the heat transfer behavior of flows through
systems partly filled with a porous material. The analysis of
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fluid flow and heat transfer interfacial conditions between a
porous medium and fluid layer is contained in Ref. [4]. The
thermal development of forced convection in such system is re-
cently described by Nield and Kuznetsov [5]. The probe of heat
transfer in a porous heat sink is well described by Zhang [6].

In the present work, the transient heat transfer between a hot
or cold flowing fluid and a parallel porous layer is investigated
numerically. The aim of this work is to predict the effects of
liquid–vapor phase-change in the porous medium on heat stor-
age and the exit temperature of the flowing fluid variations for
different fluid flow characteristics. The case of a time-variation
in the inlet temperature was also treated.

One difficult aspect in the modeling of transport mechanism
within the porous media with possible phase-change at the tran-
sient regime is that the problem suffers from a singularity if
the temperature is the primary derived solution from the energy
equation. This difficulty can be circumvented by using an en-
thalpy formulation [7,8].

2. Problem formulation

The schematic diagram considered in this paper is shown in
Fig. 1. A horizontal porous layer subjected to a heat exchange
in the upper face (0 < x < L, y = d1) with a forced fully de-
veloped fluid flow (fluid 1) d1 < y < d , entering the system at
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Nomenclature

c specific heat capacity . . . . . . . . . . . . . . . J kg −1 K−1

D capillary diffusion coefficient . . . . . . . . . . . . m2 s−1

h enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J kg−1

hfg vaporization latent heat . . . . . . . . . . . . . . . . . . J kg−1

hw heat transfer coefficient at the wall . . . W m−2 K−1

H volumetric enthalpy . . . . . . . . . . . . . . . . . . . . . . J m−3

kr relative permeability
k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

K intrinsic permeability . . . . . . . . . . . . . . . . . . . . . . . m2

L porous cavity length . . . . . . . . . . . . . . . . . . . . . . . . . m
Nu Nusselt number
d1 porous layer width . . . . . . . . . . . . . . . . . . . . . . . . . . m
d system width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Qnet thermal energy exchanged with the porous

medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−1

Re Reynolds number
s liquid saturation
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T0 initial temperature of the porous layer . . . . . . . . . K
Tin inlet temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tm,ex mean temperature value at the outlet face . . . . . . K

Tsat boiling temperature . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tw mean temperature value at the wall . . . . . . . . . . . . K
u velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

uin mean velocity value at the inlet face . . . . . . . m s−1

x, y longitudinal and transversal coordinates . . . . . . . m

Greek symbols

ε porosity of the porous medium
γh advection correction factor
μ dynamic viscosity . . . . . . . . . . . . . . . . . . kg m−1 s−1

ν kinetic viscosity . . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ surface tension . . . . . . . . . . . . . . . . . . . . . . . . . N m−1

Subscripts

l liquid phase
f 1 fluid 1
s solid phase
v vapour phase
sat saturated state
0 initial
eff effective
Fig. 1. Schematic of the problem showing coordinates and dimensions of the
porous layer and the pure fluid region.

the constant and uniform temperature Tin. The top surface of
the domain is adiabatic and impervious. The porous layer is
initially saturated with a liquid phase (fluid 2) at the tempera-
ture T0 (which may be lower or higher to Tin) and is bounded
by three impervious faces: (x = 0, 0 < y < d1), (0 < x < L,
y = 0) and (0 < x < L, y = d1). However, the face (x = L,
0 < y < d1) is permeable while the right boundary is connected
to an adjacent liquid tank (fluid 2).

In this work, we focus on the heat transfer and phase-change
effects in the porous medium on the temperature profiles in
the flowing fluid 1. The forced fluid flow is simplified by the
Hagen–Poiseuille profile.

2.1. Velocity field

The fluid 1 is assumed to be Newtonian with uniform prop-
erties. The corresponding flow is assumed to be laminar in-
compressible unidirectional and hydrodynamically developed.
Under these assumptions, the analytical solution for the fluid
flow problem between impermeable boundaries in the pure fluid
regime is given by:

u(y) = 6uin
(y − d1)(d − y)

(d − d1)2
, d1 � y � d (1)

where uin is the mean value of the velocity.
Analogous profile has been used by Nield et al. [5]. The

steadiness in the fluid flow is due to the negligible change in
the pressure gradient which drives the flow.

In the region 0 < y < d1, the pressure gradient is insignifi-
cant in the porous layer, and so:

u(y) = 0, 0 � y � d1 (2)

2.2. Energy equation

In the pure fluid region, the heat transfer is governed by the
typical single-phase energy equation. The heat transfer in the
porous medium will be treated under the assumption of local
thermal equilibrium. Local volume averaged forms of govern-
ing equations are used.

Various numerical methods have been developed to solve
energy equation with phase-change in porous media. A part
of models involves the calculation of nodal temperature sepa-
rately for all phases with appropriate interface conditions. Due
to the moving boundaries between single-phase (solid + liquid)
and two-phase (solid + liquid + vapor) domains, the solution
involves remeshing of the computational domain and real nu-
merical difficulties arise.

A significant amount of the recent literature uses an enthalpy
method which involves averaged enthalpy as primary variable
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in the energy equation. The success of the enthalpy formulation
is devoted to the use of a fixed grid in numerical calculations.

In the present study, a single energy balance equation in the
entire domain, based on the enthalpy formulation [7], is used.
This equation is given as follow:

Ω
∂H

∂t
+ →∇ .(γh

→
u H) = →∇ .(Γh

→∇ H) (3)

For the definition of the variable H and coefficients γh, Ω

and Γh, we consider two cases:

2.2.1. Case 1: pure fluid region

H = ρf 1cf 1T , γh = 1, Ω = 1 and Γh = kf 1

ρf 1cf 1

(4)

The temperature can be deduced by:

T = H

ρf 1cf 1
(5)

2.2.2. Case 2: porous layer

H = ρ(h − 2hvsat) (6)

with ρh = ρlshl + ρv(1 − s)hv and ρ = ρls + ρv(1 − s).

Ω = ε + ρscs(1 − ε)
dT

dH

γh = [sρl + ρv(1 − s)][hvsat(1 + λl) − hlsatλl]
(2hvsat − hlsat)sρl + ρv(1 − s)hvsat

Γh = ρlhfg

ρlhfg + (ρl − ρv)hvsat
D + keff

dT

dH
(7)

with D =
√

εKσ
μl

krlkrv
νv
νl

krl+krv
(−J ′(s)), J (s) = 1.417(1 − s) −

2.120(1 − s)2 + 1.263(1 − s)3

λl = ν

νl

krl, λv = 1 − λl, ν = μ

ρ
, νl = μl

ρl

μ = [ρls + ρv(1 − s)]
krl/νl + krv/νv

and krl = s, krv = 1 − s

s is the liquid saturation denoting the ratio of liquid volume and
the void space volume in a representative elementary volume.
ρl and ρv are densities of liquid and vapor phases saturating the
porous media. J (s) is the Leverett function.

hl and hv are the enthalpies of liquid and vapor phases, they
are related to temperature by the relations:

hs = csT + h0
s , hl = clT ,

hv = cvT + [
(cl − cv)Tsat + hfg

]
(8)

Tsat is the temperature of phase change, hfg is the latent heat of
vaporization and hvsat = (hv)T =Tsat .h

0
s is a reference enthalpy

and hl(T = 0) = 0. cs , cl and cv are the specific heats of solid,
liquid and vapor phases.
The temperature and liquid saturation can be deduced from
the volumetric enthalpy H by:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T = H+2ρlhvsat
ρlcl

, s = 1,

H � −ρl(2hvsat − hlsat)

T = Tsat, s = − H+ρvhvsat
ρlhfg+(ρl−ρv)hvsat

,

−ρl(2hvsat − hlsat) < H � −ρvhvsat

T = Tsat + H+ρvhvsat
ρvcv

, s = 0, −ρvhvsat < H

(9)

Initial and boundary conditions are expressed as follows:

• The faces (y = 0 and y = d), are impervious and adiabatic:

∂H

∂y
= 0 (10)

• At the inlet (x = 0), the fluid 1 enters the domain with a
constant and uniform temperature Tin, except the porous
face which is impervious and adiabatic:

H = ρf 1cf 1Tin, d1 � y � d (11)

∂H

∂x
= 0 for 0 � y � d1 (12)

• The outlet face (x = L), is in thermally developed condi-
tions:

∂H

∂x
= 0 for 0 � y � d (13)

• Initially, the porous media is at uniform temperature T0 and
the pure fluid region is at uniform temperature Tin:

H = ρf 1cf 1Tin for d1 � y � d, 0 � x � L (14)

H = ρl(clT0 − 2hvsat) for 0 � y � d1, 0 � x � L (15)

Boundary condition given by Eq. (13) reflects that heat trans-
fer at the outlet is assumed to reach the thermally developed
conditions. This assumption was justified by previous paramet-
ric test in which the computational domain was extended an-
other one-third beyond the physical length, and no appreciable
variations in the simulation results were observed.

We use the continuity of the heat flux at the wall separating
pure fluid region and porous layer, as an interface condition for
the heat transfer.

2.3. Theoretical analysis and governing parameters

For given parameters of inlet parameters for forced flow
(uin and Tin), heat transfer depends on the value of the started
porous medium temperature T0. If T0 is lower than Tin, the
forced flow will loss heat at the interface region of the porous
medium. The exiting-mean temperature of the fluid, defined by:

Tm,ex = 1

ρf 1uin(d − d1)

∫

d1�y�d

ρf 1uTx=L dy (16)

will be less then Tin. The net thermal energy transferred to the
porous medium can be calculated by:
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Qnet = Qinlet − Qoutlet =
∫

inlet face

ρf 1cf 1uT dy

−
∫

exit face

ρf 1cf 1uT dy (17)

The convective heat transfer coefficient at the wall separating
the porous layer and the pure fluid region is obtained by:

hw = Qnet

L(Tw − Tin)
(18)

where Tw is the mean temperature of the wall:

Tw = 1

L

∫

0�x�L

Ty=d1 dx (19)

An overall Nusselt number can be defined by:

Nu = hw(d − d1)

kf 1
(20)

Temperature at the outlet depends on values of uin and Tin. To-
ward a best comparison with results in the literature it is more
convenient to give the magnitude of uin with the Reynolds num-
ber defined by:

Re = ρf 1uin(d − d1)

μf 1
(21)

Eq. (3) is solved numerically by the finite volumes method [9].
Integral equations will be converted to algebraic form which
is solved numerically by the iterative line-by-line method. The
rectangular domain (d ×L) is divided by uniform and fixed grid
51 × 61 nodes. Convergence is considered to be reached when
the relative error on the values of H and p are less than 10−5

between two consecutive iterations. �t = 0.1 s is chosen for all
numerical resolutions.

Numerical calculations in the porous region have been val-
idated and used in previous studies [10–12]. In order to verify
the validity of the code in the pure fluid region, we consider the
case of forced air-flow parallel to an isotherm wall. It is well
known from the literature that for air experiment in laminar
flow, the wall-averaged Nusselt number has a Re1/2 depen-
dence. In Fig. 2 we have plotted results, given by the present
code, for Nu as a function of Re. Fitted results show a Ren de-
pendence with n = 0.507.
Fig. 2. Averaged Nusselt number for forced air-flow parallel to an isotherm
wall.

3. Results and discussions

Heat transfer calculations between forced air flow (fluid 1)
and porous medium were conducted with and without phase-
change. The porous medium is initially saturated by a fluid
(R141b) that evaporates at Tsat = 32 ◦C (corresponding to the
pressure 1 bar). Thermophysical and geometrical properties of
the porous medium and fluids used are shown in Table 1.

The Reynolds number was varied from 400 to 1000 under
conditions of two different values of initial temperature of the
porous medium T0 (T0 � Tsat and T0 � Tsat). To show the effi-
ciency of the system to store thermal energy, the inlet tempera-
ture of forced flow differs from T0: T0 − �T < Tin < T0 + �T

(�T = 10 ◦C).
In each case, we calculate numerically temperature profiles

for the porous medium and the flowing fluid. Resulting pro-
files serve to evaluate the mean exiting temperature Tm,ex at the
outlet face and the corresponding convective heat transfer rate.
Table 1
Thermophysical property data for the porous medium (a), R141b fluid (b) and air (c)

L–d–d1 keff Absolute cs ρs ε

(cm) (W m−1 K−1) permeability (m2) (J kg−1 K−1) (kg m−3)

150–5–0,5 0.85 10−10 8.79 × 102 2.645 × 103 0.35

(a)

cl cv ρl ρv μl μv hfg
(J kg−1 K−1) (J kg−1 K−1) (kg m−3) (kg m−3) (kg m−1 s−1) (kg m−1 s−1) (J kg−1)

1.16 × 103 0.804 × 103 1227 4.8 4.3 × 10−4 0.939 × 10−5 2.23 × 105

(b)

cf 1 kf 1 ρf 1
(J kg−1 K−1) (W m−1 K−1) (kg m−3)

1.00 × 103 0.026 1.2

(c)
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Fig. 3. Time-space evolution of the thermal field: Tin = 30 ◦C, T0 = 20 ◦C, Re = 400.
Exiting thermal conditions will be depicted from transient mean
temperature profile at the exit face.

In all calculations performed in this study, the maximum
variation of the liquid saturation detected is �smax = 0.05
which corresponds to a pressure variation �pmax = 0.06 bar.
Thus, corresponding phase-change temperature will be less
than 2 ◦C. Boiling temperature is then considered constant and
has a fixed value 32 ◦C.

3.1. The case of fixed inlet temperature Tin = T0 + �T

(�T = 10 ◦C)

3.1.1. Heat transfer without phase-change
Calculated temperature profiles for T0 = 20 ◦C and Tin =

30 ◦C are shown in Fig. 3 with Re = 400. It is seen that tem-
perature profiles for fluid and porous medium are significantly
different. This difference can be attributed to significant differ-
ent values of thermal conductivities and specific heat capacities
for two regions. In the fluid region, the heat transfer mecha-
nism is forced convection in the longitudinal direction and heat
transfer by conduction with the porous medium at the separat-
ing horizontal wall (y = d1 and 0 < x < L). As a consequence,
the temperature is found to be decreased from the inlet to reach
a low value at the exit. The vertical thermal gradient increases at
first, then decreases and will have zero value if the entire porous
medium is heated at the inlet temperature. At this point, no
heat transfer is depicted at the wall and exit temperature equals
inlet temperature. In Fig. 4, we have represented transient vari-
ations of the exit mean temperature. The net thermal energy
transferred to the porous layer increases with time, reaches a
maximum and decreases to have zero value (Fig. 5). As a con-
sequence, the outlet temperature falls at first to a lower value
Tm,ex,min and then increases to attain the inlet temperature value
at the steady state (Fig. 4).
Fig. 4. Transient profiles of the mean exiting temperature, for different values
of Re: Tin = 30 ◦C, T0 = 20 ◦C.

From Fig. 5, it can be seen that heat transfer between fluid
flow and porous medium is more efficient at high Re number.
The steady state is more rapidly attained as Re is higher. As
could be expected, any increase in the value of Re yields an in-
crease in the minimum value of exit temperature (Fig. 4). In
fact, with high forced flow intensity, the fluid temperature is
highly influenced by forced convection and then, exit tempera-
ture equals rapidly the inlet temperature.

3.1.2. Heat transfer with phase-change T0 = 30 ◦C
In the previous section, calculations were performed with-

out phase-change. The temperature drop in the fluid phase is
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Fig. 5. Transient profiles of the heat exchanged by air-flow with the porous
medium, for different values of Re: Tin = 30 ◦C, T0 = 20 ◦C.

caused by the sensible heat storage in the porous medium sat-
urated with a single fluid phase. In this section, the initial
temperature of the porous medium T0 approaches the boil-
ing temperature Tsat (32 ◦C) of the fluid saturating the porous
medium.

Due to heat transfer with hot forced fluid flow, the temper-
ature in the porous medium increases and reaches the boiling
point Tsat. As a consequence, liquid–vapour phase-change takes
place in the porous medium. An isothermal two-phase zone
(T = Tsat) will appear in the porous region (Fig. 6). Thermal en-
ergy is then stored by latent heat and the forced flow exchanges
heat with an isothermal wall Tw = Tsat. Heat transfer and outlet
Fig. 7. Transient profiles of the mean exiting temperature, for different values
of Re: Tin = 40 ◦C, T0 = 30 ◦C.

temperature variations are then less important that the case with
sensible heat storage (Figs. 7 and 8). Finally, the outlet temper-
ature will be stabilized at a fixed value if the porous medium is
occupied by the two-phase zone and a good uniformity in the
wall temperature is achieved. The final value of the outlet tem-
perature decreases with the Re number and it is rapidly reached
for high values of Re.

3.2. The case of square pulsating of inlet temperature

Preceding results show the importance of the use of porous
layer to store thermal energy. Now, we will detect the possibility
Fig. 6. Time-space evolution of the thermal field: Tin = 40 ◦C, T0 = 30 ◦C, Re = 400.
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Fig. 8. Transient profiles of the heat exchanged by air-flow with the porous
medium, for different values of Re: Tin = 40 ◦C, T0 = 30 ◦C.

Fig. 9. Transient profiles of the mean exiting temperature, for different values
of Re: Tin = 30 ◦C (t < 20 000 s), Tin = 10 ◦C (t > 20 000 s) and T0 = 20 ◦C.

to use the present system for storing thermal energy during a
charging period and recovered it during a discharging period.

We consider at present, a forced fluid flow where the inlet
temperature pulsates in time. During a first phase, the inlet tem-
perature is kept constant at Tin = T0 + �T (�T = 10 ◦C). At
t = 20 000 s, Tin is fixed at T0 − �T (�T = 10 ◦C). Fig. 9
shows the time variation of the exiting temperature Tm,ex in the
case “without phase-change” (T0 = 20 ◦C) for different values
of Re number. As can be seen, the exiting temperature pulsates
with time with phase-shifting the inlet temperature variation.
This phenomena (phase-shifting) is related to the thermal en-
Fig. 10. Transient profiles of the mean exiting temperature, for different values
of Re: Tin = 40 ◦C (t < 20 000 s), Tin = 20 ◦C (t > 20 000 s) and T0 = 30 ◦C.

ergy storage in the porous medium and is less and less important
as Re is higher.

The case of heat storage with phase-change has also been
studied where the value of T0 is fixed at 30 ◦C and Tin pulsates
between T0 + �T and T0 − �T (�T = 10 ◦C). Resulting tem-
perature profiles at the outlet are presented in Fig. 10. A com-
parison of Figs. 9 and 10 indicates that outlet temperature will
have very weak pulsating around the boiling temperature. How-
ever, the pulsating amplitude will be more and more important
as Re increases.

As mentioned earlier, this difference is due to the large ra-
tio of latent heat to sensible heat and the isothermal behaviour
of two-phase change. Thermal energy storage by latent heat al-
lows system to store heat during the charging period. This heat
will be recovered in the discharging period by heating the fluid
flow. From Fig. 10 we can see that the exit temperature could be
kept constant at a large time depending on the Reynolds number
value.

3.3. The case of sinusoidal time-variations of inlet
temperature

We consider now the problem of a forced fluid flow sub-
mitted to periodical variations of inlet temperature where Tin is
modelized by a sinusoidal time-variation around the tempera-
ture T0:

Tin = T0 + 10 cos(wt). In Fig. 11, we have represented a
time-variation of the mean exiting temperature for Re = 400
and Re = 1000. In this case, T0 = 20 ◦C and Tin oscillates be-
tween 30 ◦C and 10 ◦C. So, no phase-change will take place
in the porous medium. We can see (Fig. 11) that, due to a
sensible heat storage in the porous layer, important amplitude-
dampening and phase-shifting appear at low Re. However, at
high values of Re, time-variations at the outlet face approaches
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Fig. 11. Transient profiles of the mean exiting temperature, for different values
of Re: T0 = 20 ◦C.

Fig. 12. Transient profiles of the mean exiting temperature, for different values
of Re: T0 = 31.5 ◦C.

that for Tin. As discussed above, heat sensible storage in porous
layer has slight effects on Tm,ex at high Re.

Phase-shifting and amplitude- dampening are also studied
in the case “with phase-change”. Fig. 12 shows results were
T0 = 31.5 ◦C (Tsat = 0.5 ◦C) and Tin oscillates between 41.5
and 21.5 ◦C. This figure further shows important decrease of
the amplitude-oscillations which is very strong for Re = 400
and Tm,ex approaches Tsat. This phenomenon is a consequence
of liquid–vapor phase-change which takes place in the porous
layer. In contrary, in this case the phase-shift is less important
as compared with the case “without phase-change” (Fig. 11).
In fact, in the latter case, sensible heat storage allows the tem-
perature of the porous layer, depending of the Re value, to vary
between Tin,max and Tin,min. Thus, if the temperature of the wall
Tw is at a high value (heating regime) and Tin changes to a cold
regime, Tw will decrease in a large period. However, with a
liquid–vapour phase-change, Tw is fixed at Tsat and then the
phase-shift would be largely smaller.

4. Conclusions

In this article, we developed a theoretical model, based on
the enthalpy formulation of the energy equation, to describe
heat storage effects in a porous layer on temperature field
of a forced fluid (air) flow. A possible transition from satu-
rated porous medium (liquid + solid phases) to a non-saturated
porous medium (liquid + vapour + solid phases), is taken into
account. This model has been used to predict the effect of ther-
mal energy storage on the average temperature inside the pure
fluid forced flow. Concluding remarks of this study can be sum-
marized as follows:

(i) By impregnation of a porous layer into a forced fluid flow,
thermal energy may be stored and then serves to cooling
hot fluid flow or preheating cold fluid flow.

(ii) Thermal energy storage is more efficient at low forced flow
(low values of Re number).

(iii) A large heat storage capacity of the porous medium is de-
picted if the energy is stored by latent heat. Existing tem-
perature of the forced flow is then more stabilized around
the phase-change temperature.

(iv) Possible phase-shifting and amplitude-dampening of the
inlet forced flow temperature oscillations are depicted.
These phenomena depend on stored form of heat (latent
or sensible) and forced flow intensity (Re number).
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